Synthesis of 6,7-Dimethoxy-1-halobenzyl-1,2,3,4-tetrahydroisoquinolines

Su-Dong Cho, Deok-Heon Kweon, Young-Jin Kang, Sang-Gyeong Lee, Woo Song Lee and Yong-Jin Yoon*

> Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Chinju 660-701, Korea Received April 6, 1999

Some 6,7-dimethoxy-1-halobenzyl-1,2,3,4-tetrahydroisoquinolines were synthesized from 2-(3,4-dimethoxyphenyl)ethylamine and halophenylacetic acids in three steps in good yield.

J. Heterocyclic Chem., 36, 1151 (1999).

In a previous paper [1], we reported the pharmacological characterization of effects of verapamil and 1-(4'-methoxybenzyl)-6,7-dihydroxy-3,4-dihydroisoquinoline on the isolated guinea pig and on the rat terachesalis. In connection with our research program for the study on the pharmacological characterization of novel isoquinoline derivatives, we required some isoquinolines containing the mono- (or di-)halobenzyl moiety at the C-1 position.

In this paper, we would like to report the synthesis of 6,7-dimethoxy-1-halobenzyl-1,2,3,4-tetrahydroisoquinoilines.

The synthesis of N-[2-(3,4-dimethoxyphenyl)ethyl]-2-methoxyphenylacetamides from 2-(3,4-dimethoxyphenyl)ethylamine and phenylacetic acid (or phenylacetyl halide) has been reported [2]. Because of the convenience, we used halophenylacetic acid as the starting material for the preparation of 3.

Reaction of 1 with halophenylacetic acid 2 in the presence of potassium carbonate gave the corresponding amides 3 in good yield. The structures of compounds 3 were established by ir, ¹H nmr and elemental analyses.

The Bischler-Napieralski cyclization [2] of 3 with phosphorus oxychloride gave the corresponding 3,4-dihydroisoquinoline derivatives 4 in good yield. The infrared spectra of 4 did not show absorption bands of the carbonyl and NH groups. The 1 H nmr spectra of 4 revealed proton signals of two OCH₃ (δ 3.75-3.90 ppm as singlets), two CH₂ of C-3 and C-4 positions (δ 3.36-3.78 ppm as triplets for C-3, δ 2.51-2.71 ppm as triplet for C-4) and one benzylic CH₂ at C- α position (δ 4.00-4.34 ppm as singlet) involving aromatic protons.

Reduction of 4 with sodium borohydride in methanol also afforded the corresponding 1,2,3,4-tetrahydroiso-quinolines 5 in good yield, respectively. The infrared spectra of compounds 5 showed the absorption bands of NH in the 3322-3363 cm⁻¹ range. The ¹H nmr spectra of 5 also showed proton signals of two OCH₃ at C-6 and C-7 (δ 3.77-3.87 ppm as a singlet), one NH of N-2 position (δ 1.67-2.12 ppm as a broad singlet), one CH of C-1 position (δ 3.97-4.67 ppm as a multiplet) and two CH₂ (δ 2.56-2.83 ppm as multiplets for CH₂ of α -position; δ 3.00-3.62

i) K₂CO₃, acetonitrile, reflux. ii) POCl₃, toluene, reflux. iii) NaBH₄, methanol.

2-5 a b c d e f (Cl)_n 2-Cl 3-Cl 4-Cl 3,4-Cl₂ 2,4-Cl₂ 2,6-Cl₂ ppm as a multiplet for the CH_2 of C-4). Whereas, the proton signals for the methylene group at the C-3 position were detected two multiplets in the δ 2.71-3.03 ppm range for axial proton and in the δ 2.80-3.30 ppm range for equatorial proton [3]. The proton signals of the α -methylene show as multiplet because it may be the diasteromeric protons.

4c were stirred in acetone or ethyl acetate for 3 days at room temperature to give the corresponding 1-benzoyl derivatives 6 in 64-75% yield. The infrared spectra of 6 showed the absorption band of the carbonyl group in the 1680-1704 cm⁻¹ range. The 13 C nmr spectra of 6 also showed carbon signals for the carbonyl group at the α -position in the δ 192.2-195.0 ppm range. Reduction of

Scheme II

H₃CO

H₃CO

$$(Cl)_n$$

i)

 $(Cl)_n$

ii)

 $(Cl)_n$
 $(Cl)_n$

i) Acetone or diethyl ether ii) NaBH₄, methanol.

 $(Cl)_n$
 $(Cl)_n$

On the other hand, we attempted the synthesis of 1-(α -hydroxybenzyl) derivatives 7 from the corresponding 4. According to Kametani *et al.* [4], Weisbach *et al.* [5] and Martin *et al.* [6], the air oxidation of the α -methylene occurs readily in a suitable organic solvents such as methanol, ethanol or benzene. Therefore, compounds 4a-

6 with sodium borohydride in methanol afforded the corresponding α-hydroxy derivatives 7 in good yield. The structures of 7 were established by ir, nmr and elemental analyses.

Further research including the pharmacological action are under way in our laboratory.

Table 1
Yields, Melting Points and Infrared Spectral Data for 3 and 4

Compound	Yield	mp	IR (potassium bromide)
No.	(%)	[a]	(cm ⁻¹)
3a	90	113-114 (D)	3322, 3064, 2984, 2940, 2912, 2826, 1640, 1544, 1518, 1466, 1422, 1246, 1232, 1140, 1020, 800, 762
3b	86	88-89 (D)	3340, 3102, 3024, 2960, 2852, 1660, 1560, 1532, 1464, 1456, 1430, 1344, 1278, 1248, 1150, 1036, 818, 778, 756
3c	84	124-125 (D)	3320, 3100, 3032, 2964, 2944, 2856, 1656, 1560, 1530, 1476, 1434, 1270, 1248, 1156, 1100, 1040, 864, 820
3d	87	125-126 (DH)	3310, 3100, 3045, 2970, 2862, 1654, 1566, 1530, 1482, 1435, 1386, 1350, 1276, 1250, 1212, 1156, 1040, 972, 894, 872, 818
3e	90	137-138 (DH)	3092, 3032, 2956, 2844, 1636, 1584, 1522, 1480, 1454, 1360, 1256, 1212, 1184, 1108, 1052, 1020, 866, 820, 730
3f	82	155-156 (DH)	3090, 3020, 2960, 2910, 2850, 1664, 1620, 1522, 1466, 1446, 1364, 1328, 1266, 1240, 1222, 1004, 1120, 1022, 940, 886, 784, 770
4a	91	73-74 (H)	3090, 3046, 2954, 2858, 1608, 1576, 1528, 1488, 1478, 1356, 1314, 1260, 1252, 1220, 1172, 1064, 1040, 866, 834, 726
4b	83	67-68 (H)	3106, 3044, 2948, 2860, 1618, 1543, 1486, 1426, 1368, 1272, 1210, 1160, 1056, 886, 853, 770
4c	86	104-105 (H)	3040, 2986, 2846, 1612, 1578, 1510, 1374, 1330, 1300, 1244, 1220, 1164, 1098, 1060, 870, 862, 836, 640
4d	82	86-87 (DH)	3060, 2952, 2854, 1616, 1582, 1544, 1470, 1378, 1306, 1280, 1246, 1164, 1066, 1048, 864, 820, 774
4 e	90	131-132 (DH)	3066, 2954, 2838, 1602, 1570, 1518, 1482, 1360, 1284, 1270, 1238, 1208, 1150, 1048, 860, 808
4f	89	93-94 (DH)	3100, 3038, 2950, 2882, 2852, 1620, 1584, 1530, 1458, 1290, 1254, 1228, 1180, 1074, 982, 788

Table 2
Yields, Melting Points and Infrared Spectral Data for 5, 6 and 7

			·
Compound No.	Yield (%)	mp [a]	IR (potassium bromide) (cm ⁻¹)
5a	85	62-63 (DH)	3345, 3056, 2996, 2956, 2888, 1612, 1512, 1466, 1449, 1258, 1220, 1114, 853, 748
5b	87	Liquid	3336, 3012, 2922, 1594, 1512, 1457, 1262, 1220, 1104, 1024, 838, 766
5c	92	Liquid	3322, 3012, 2924, 2854, 1603, 1516, 1498, 1266, 1221, 1114, 1004, 845, 793
5d	90	Liquid	3363, 3026, 2963, 2864, 1622, 1527, 1482, 1272, 1239, 1129, 864, 794
5e	78	79-80 (DH)	3350, 2952, 2847, 1619, 1520, 1478, 1365, 1263, 1277, 1222, 1112, 1020, 860, 782
5f	82	116-118 (DH)	3348, 3082, 3021, 2950, 2912, 2837, 1619, 1520, 1440, 1362, 1263, 1225,1112, 1027, 857, 784
6a	67	98-99 (DH)	3092, 3036, 2974, 2860, 1704, 1614, 1574, 1523, 1448, 1290, 1160, 1086, 1050, 920, 894, 818, 780
6b	64	119-120 (DH)	3088, 3026, 2966, 2850, 1683, 1621, 1580, 1530, 1464, 1380, 1340, 1280, 1208, 1158, 1080, 864, 812, 770, 730, 700
6c	75	130-131 (DH)	3040, 1680, 1620, 1580, 1532, 1462, 1380, 1340, 1286, 1216, 1158, 1100, 918, 816, 780
7a	86	147-148 (D)	3491, 3230, 3060, 3006, 2843, 1634, 1526, 1457, 1262, 1238, 1120,1062, 856, 778
7b	84	92-93 (D)	3268, 3006, 2910, 2838, 1610, 1526, 1476, 1258, 1144, 1112, 1010, 944, 752
7c	90	(D) 143-145 (D)	3320, 3096, 2924, 2826, 1622, 1530, 1478, 1340, 1270, 1240, 1132,1130, 1070, 857, 784

[[]a] Recrystallization solvent; D = Diethyl ether, DH = Diethyl ether/n-Hexane (1:1, v/v).

Table 3

1H NMR Spectral Data for 3 and 4

Compound	Solvent			1	H NMR (δ, ppm) [b]		
No.	[a]	N-H	3' (or 6)-	4' (or 7)-	1 (or 3)-	2 (or 4)-	α-	Ar-H
	.,	(bs)	OMe (s)	OMe (s)	CH ₂ (t)	CH ₂ (t)	CH ₂ (s)	(m)
3a	С	5.51	3.80	3.82	3.31- 3.61	2.66- 2.68	3.61	6.60-7.25
3b	D	5.54	3.82	3.85	3.43- 3.49	2.67- 2.72	3.47	6.54-7.28
3c	С	5.55	3.83	3.87	3.42- 3.46	2.67- 2.71	3.48	6.51-7.29
3d	D	8.13	3.71	3.71	3.24- 3.26	2.63- 2.66	3.42	6.63-7.55
3e	С	5.50	3.71	3.73	3.65- 2.69	3.69 2.80	4.54	6.77-7.36
3f	С	5.49	3.71	3.73	3.63- 3.69	2.66- 2.79	4.54	7.79-7.47
4a	С	_	3.79	3.88	3.70- 3.75	2.65- 2.70	4.18	6.66-7.39
4 b	С	_	3.77	3.89	3.72- 3.75	2.64- 2.69	4.03	6.68-7.31
4c	С	-	3.75	3.87	3.69- 3.72	2.62- 2.67	4.00	6.66-7.23
4d	С	_	3.80	3.90	3.71- 3.78	2.64- 2.71	4.00	6.89-7.41
4e	D		3.76	3.79	3.43-	2.71 2.52- 2.57	4.14	6.89-7.57
4f	D		3.82	3.84	3.48 3.36- 3.38	2.51- 2.55	4.34	6.90-7.45

[[]a] D = Dimethyl- d_6 sulfoxide. C = Deuteriochloroform. [b] Abbreviations used: bs = broad singlet, s = singlet, t = triplet, m = multiplet and Ar = Aromatic. J = Hz unit. The proton signals of NH were exchangeable with deuterium oxide.

Table 4

¹H NMR Spectral Data of 5

	¹ H NMR (ppm) [b]									
Compound No.	Solvent [a]	1- CH (m)	2- NH (bs)	3- CH ₂	4- CH ₂ (m)	6- MeO (s) [c]	7- MeO (s) [c]	α- CH ₂ (m)	Ar-H	
5 a	D	4.06- 4.28	1.76	2.94-3.03 (m, 1H _a) 3.22-3.30 (m, 1H _e)	3.38- 3.62	3.87	3.82	2.74- 2.78	6.60 (s, 1H) 6.68 (s, 1H) 7.17-7.29 (m, 3H) 7.38-7.44 (m, 1H)	
5b	D	4.09- 4.15	1.98	2.83-2.88 (m, 1H _a) 2.91-2.95 (m, 1H _c)	3.13- 3.21	3.85	3.81	2.69- 2.75	6.59 (s, 2H) 7.12-7.27 (m, 4H)	
5c	D	4.09- 4.13	1.76	2.83-2.88 (m, 1H _a) 2.91-2.93 (m, 1H _c)	3.13- 3.20	3.83	3.81	2.67- 2.74	6.59 (s, 1H) 6.60 (s, 1H) 7.15-7.28 (m, 4H)	
5d	D	3.97- 4.00	2.12	2.71-2.79 (m, 1H _a) 2.80-2.83 (m, 1H _e)	3.00- 3.14	3.80	3.77	2.56- 2.62	6.61 (s, 1H) 6.84 (s, 1H) 7.29-7.30 (m, 1H) 7.52-7.62 (m, 2H)	
5e	D	4.19- 4.67	1.67	2.91-2.96 (m, 1H _a) 2.98-3.02 (m, 1H _e)	3.20- 3.44	3.87	3.83	2.72- 2.76	6.60 (s, 1H) 6.66 (s, 1H) 7.21-7.42 (m, 3H)	
5f	D	4.13- 4.18	1.71	2.84-2.88 (m, 1H _a) 3.13-3.24 (m, 1H _e)	3.22- 3.24	3.87	3.79	2.67- 2.83	6.45 (s, 1H) 6.64 (s, 1H) 7.25-7.31 (m, 1H) 7.44-7.47 (m, 1H)	

[[]a] D = Dimethyl- d_6 sulfoxide. C = Deuteriochloroform. [b] Abbreviations used: bs = broad singlet, s = singlet, m = multiplet and Ar. = Aromatic, H_a = axial hydrogen, H_e = equatorial hydrogen. J = Hz unit. The proton signals of NH were exchangeable with deuterium oxide. [c] Assignment may be interchanged.

Table 5

1H NMR Spectral Data of 6 and 7

Compound	Solvent			11	H NMR (ppm)	[b]			
No.	[a]	1- CH (d) (J)	2- NH (bs)	3-CH ₂	4- CH ₂	6- MeO (s) [c]	7- MeO (s) [c]	α- CH ₂ (d) (J)	Аг-Н
6а	С	_	_	3.82-3.87 (m)	2.71- 2.77 (t)	3.93	3.88	_	6.74 (s, 1H) 7.27 (s, 1H) 7.35-7.45 (m, 3H) 7.68-7.71 (m, 1H)
6b	С			3.92-3.97 (m)	2.80- 2.85 (t)	3.96	3.81		6.77 (s, 1H) 6.97 (s, 1H) 7.40-8.03 (m, 4H)
6с	С		_	3.91-3.94 (m)	2.80- 2.85 (t)	3.95	3.81		6.77 (s, 1H) 6.96 (s, 1H) 7.45-7.48 (d, 2H,

Table 5 (continued)

Compound	Solvent	¹ H NMR (ppm) [b]							
No.	[a]	1- CH (d) (J)	2- NH (bs)	3-CH ₂	4- CH ₂	6- MeO (s) [c]	7- MeO (s) [c]	α- CH ₂ (d) (J)	Ar-H
									J = 8.4), 7.98- 8.01(d, 2H, J = 8.4)
7a	С	4.59- 4.60 (3.7)	2.12	2.59-2.65 (m, 1H _a) 3.30-3.39 (m, 1H _e)	2.82- 3.00 (m)	3.84	3.41	5.19- 5.20 (3.9)	5.85 (s, 1H) 6.59 (s, 1H) 7.22-7.42 (m, 4H) (OH not detect)
7b	С	4.31- 4.33 (4.4)	1.78	2.55-2.59 (m)	2.86- 2.92 (m)	3.86	3.70	4.97- 4.98 (4.6)	6.46 (s, 1H) 6.56 (s, 1H) 7.06-7.32 (m, 4H) (OH not detect)
7c	С	4.25- 4.26 (4.2)	3.06	2.47-2.53 (m)	2.79- 2.80 (m)	3.83	3.70	4.96- 4.98 (5.0)	4.82 (bs, OH), 6.47 (s, 1H), 6.52 (s, 1H), 7.10- 7.22 (m, 4H)

[a] D = Dimethyl- d_6 sulfoxide. C = Deuteriochloroform. [b] Abbreviations used: bs = broad singlet, d = doublet, s = singlet, m = multiplet and Ar. = Aromatic, H_a = axial hydrogen, H_e = equatorial hydrogen. J = Hz unit. The proton signals of OH and NH were exchangeable with deuterium oxide. [c] Assignment may be interchanged.

Table 6 (continued)

	Elemental An	alytical Data o	f 3-5	Compound	Molecular	Elemental Analyses (%)			
					No.	Formula	(Calcd/Found)		
Compound	Molecular		nental Analyse		710.	1 01111010	c `	H	N
No.	Formula		(Calcd/Found)				C	••	• • •
		С	Н	N	5a	$C_{18}H_{20}NO_2CI$	68.03	6.34	4.41
•	G 11 110 GI						68.23	6.50	4.60
3a	C ₁₈ H ₂₀ NO ₃ CI	64.77	6.04	4.20	5b	$C_{18}H_{20}NO_2CI$	68.03	6.34	4.41
		64.89	6.15	4.31		.0 20 2	68.25	6.45	4.62
3b	C ₁₈ H ₂₀ NO ₃ Cl	64.77	6.04	4.20	5c	$C_{18}H_{20}NO_2CI$	68.03	6.34	4.41
		64.90	6.14	4.25		10 20 2	68.30	6.52	4.58
3c	C ₁₈ H ₂₀ NO ₃ Cl	64.77	6.04	4.20	5d	C ₁₈ H ₁₉ NO ₂ Cl ₂	61.37	5.44	3.98
		64.92	6.23	4.32		-101922	61.43	5.60	4.00
3d	$C_{18}H_{19}NO_3Cl_2$	58.71	5.20	3.80	5e	C ₁₈ H ₁₉ NO ₂ Cl ₂	61.37	5.44	3.98
		58.90	5.32	3.90		016-19-1020-2	61.51	5.59	4.10
3e	$C_{18}H_{19}NO_3Cl_2$	58.71	5.20	3.80	5f	$C_{18}H_{19}NO_2Cl_2$	61.37	5.44	3.98
		58.97	5.40	3.98		01811191102012	61.53	5.66	4.08
3f	$C_{18}H_{19}NO_3Cl_2$	58.71	5.20	3.80			01.55	5.00	1.00
		58.98	5.34	3.95					
4a	$C_{18}H_{18}NO_2Cl$	68.46	5.75	4.44		Table 7			
		68.50	5.87	4.62		Elemental Analy	tical Data of 6	and 7	
4b	$C_{18}H_{18}NO_2CI$	68.46	5.75	4.44					
	10 10 2	68.65	5.89	4.57	Compound	Molecular	Eler	nental Analyse	es (%)
4c	C ₁₈ H ₁₈ NO ₂ Cl	68.46	5.75	4.44	No.	Formula		(Calcd/Found	
	10 10 2	68.76	5.88	4.80			С	Н	N
4d	C ₁₈ H ₁₇ NO ₂ Cl ₂	61.73	4.89	4.00			· ·		
	-101724-2	61.99	4.98	4.13	6a	C ₁₈ H ₁₆ NO ₃ Cl	65.56	4.89	4.25
4e	C ₁₈ H ₁₇ NO ₂ Cl ₂	61.73	4.89	4.00		0181116110301	64.76	4.98	4.29
	01811/1102012	61.91	5.01	4.18	6b	C ₁₈ H ₁₆ NO ₃ Cl	65.56	4.89	4.25
4f	C18H17NO2Cl2	61.73	4.89	4.00	UD.	C18111611O3C1	64.82	4.97	4.23
71	C1811171102C12	61.93	5.07	4.00	6с	C H NO CI	65.56	4.89	4.25
		01.73	3.07	-1 .22	UC	C ₁₈ H ₁₆ NO ₃ CI	03.30	4.09	4.23

Table 7 (continued)

Compound No.	Molecular Formula	Elemental Analyses (%) (Calcd/Found)					
		C	Н	N			
		64.87	4.99	4.33			
7a	$C_{18}H_{20}NO_3CI$	64.77	6.04	4.20			
		64.98	6.14	4.27			
7b	$C_{18}H_{20}NO_3CI$	64.77	6.04	4.20			
		64.97	6.21	4.30			
7c	$C_{18}H_{20}NO_3Cl$	64.77	6.04	4.20			
		64.90	6.26	4.35			

EXPERIMENTAL

Melting points were determined with a Thomas-Hoover capillary apparatus and are uncorrected. Magnetic resonance spectra were obtained on a Varian Unity Plus 300 or a Bruker FTNMR-DRX 500 spectrometer with chemical shift values reported in δ units (part per million) relative to an internal standard (tetramethylsilane). Infrared spectral data were obtained on a Hitachi 270-50 spectrophotometer. Elemental analyses were performed with a Perkin Elmer 240C. Open-bed chromatography was carried out on silica gel 60 (70-230 mesh, Merck) using gravity flow. The column was packed as slurries with the elution solvent.

N-[2-(3,4-Dimethoxyphenyl)ethyl]-2-halophenylacetamides 3.

A mixture of 1 (39 mmoles), phenol derivatives 2 (40 mmoles), potassium carbonate (41 mmoles) and acetonitrile (80 ml) was refluxed for 6 hours. After cooling to room temperature, the mixture was filtered and washed with acetonitrile (10 ml x 2). The combined filtrate was evaporated under reduced pressure. The residue was triturated in water/diethyl ether (1:1, v/v; 100 ml) with stirring. The resulting crystals were filtered and washed with diethyl ether (10 ml x 2). The crude product was recrystallized to give compounds 3.

6,7-Dimethoxy-1-halobenzyl-3,4-dihydroisoquinolines 4.

A solution of 3 (20 mmoles), phosphorus oxychloride (22 moles) and dry toluene (80 ml) was refluxed for 4 hours. The mixture was evaporated under reduced pressure. Ammonia water (28%) was added to the residue. After stirring for 10 minutes, the mixture was filtered and washed with n-hexane (10 ml x 2). The resulting residue was applied to the top of an openbed silica gel column (3 x 10 cm). The column was eluted with methylene chloride/ethyl acetate (10:3, v/v). Fractions containing the product were combined and evaporated under reduced pressure. The crude product was recrystallized to afford compounds 4.

6,7-Dimethoxy-1-halobenzyl-1,2,3,4-tetrahydroisoguinolines 5.

A mixture of 4 (11 mmoles), sodium borohydride (12 mmoles) and methanol (50 ml) was stirred for 8 hours at room temperature. After evaporating the solvent, water (50 ml) and methylenechloride (50 ml) were added to the residue with stirring. The organic layer was separated, dried over anhydrous magnesium sulfate and evaporated under reduced pressure. The resulting residue was recrystallized to give 5.

6,7-Dimethoxy-1-benzoyl-3,4-dihydroisoquinolines 6.

Compounds 4a-4c (20 mmoles) was dissolved in acetone (50 ml) or diethyl ether (50 ml). The solution was stirred for 3 days at room temperature. After evaporating the solvent under reduced pressure, the residue was applied to the top of an openbed silica gel column (3 x 10 cm). The column was eluted with chloroform/ethyl acetate (10:3, v/v). Fractions involving the product were combined and evaporated under reduced pressure. The resulting residue was recrystallized from a suitable solvent to give the corresponding ketones 6; 13C nmr (deuteriochloroform): **6a,** δ 25.0, 47.9, 55.9, 56.0, 110.0, 110.2, 118.8, 126.9, 130.0, 130.8, 130.9, 131.5, 132.5, 138.0, 147.4, 151.5, 163.9, 195.0 ppm; **6b**, δ 25.2, 47.3, 55.9, 56.0, 109.5, 110.4, 119.0, 128.5, 129.7, 130.2, 131.1, 133.5, 134.6, 137.2, 147.6, 151.8, 163.6, 192.2 ppm; **6c**, δ 25.3, 47.3, 56.0, 56.1, 110.0, 110.5, 119.1, 128.7, 128.8, 134.0, 131.2, 131.8, 131.9, 140.3, 147.7, 151.8, 163.9, 192.5 ppm.

6,7-Dimethoxy-1-(α -hydroxyhalobenzyl)-1,2,3,4-tetrahydroiso-quinolines 7.

A mixture of 6 (11 mmoles), sodium borohydride (12 mmoles) and methanol (50 ml) was stirred for 8 hours at room temperature. After evaporating the solvent, water (50 ml) and methylenechloride (50 ml) were added to the residue with stirring. The organic layer was separated, dried over anhydrous magnesium sulfate and evaporated under reduced pressure. The resulting residue was recrystallized to give 7.

REFERENCES AND NOTES

- [1] K. C. Chang, H. J. Ko, S. D. Cho, Y. J. Yoon and J. H. Kim, Eur. J. Pharmacol., 236, 51 (1993)
- [2] M. Shamma, The Isoquinoline Alkaloids, Chemistry and Pharmacology, Academic Press, New York, 1972, p 51.
- [3a] G. Grethe, M. Uskokovic, T. Williams and A. Brossi, *Helv. Chim. Acta*, **50**, 2397 (1967); [b] M. Shamma, The Isoquinoline Alkaloids, Chemistry and Pharmacology, Academic Press, New York, 1972, p 17.
- [4] T. Kametani, S. Kano and T. Kikuchi, J. Pharm. Soc. Japan, 86, 423 (1966).
- [5] J. A. Weisbach, J. L. Kirkpatrick, E. Macko and B. Douglas, J. Med. Chem., 11, 752 (1968)
- [6] N. H. Martin, S. L. Champion and P. B. Belt, *Tetrahedron Letters*, 21, 2613 (1980).